DESCENT THEORY: FROM GENERAL TO SPECIAL

CORNELIUS GREITHER

1. THE BASIC IDEA OF A DESCENT DATUM

All rings are assumed commutative. Let R C S be an extension of
rings; ® stands for ®g, and ¢M is short for S @ M. The question is:
When an S-module N is given, how can we decide whether N has the
form gM for some R-module M, and can we describe the candidates
M? If N = ¢M, then there is an isomorphism g : S® sM — sM ® S,
sending s®t®@m to s®@m ®t, in other words: just left-shifting the M-
entry. Then g has two properties. First it makes the following diagram
commute:

S® M

i

M—>5M g

\\@i

sM®S

For the second property we need shorthand notation. The map g¢; :
SRIQsM — S®sM ® S arises from g via tensoring with S on
the left; similarly g3 by tensoring on the right, and g, by tensoring in
the middle. All these maps are simple to imagine, but g is the most
awkward to write down: if h : S ® ¢M — ¢M ® S is any map and
h(s@n)=>,n;®s;, then ho(s®@t®@n) =) n; ®t® s;. The second
property of g is then
92 = g3 0 g1.
The effect of either side in this equation is simply shifting M from right
to left; in one go if we use g5, and in two moves, via the middle, if we
use g3g1. The idea is now to recover M as the difference kernel of
go(18—)
sM —— sM®S
-®1

A minimal requirement for this to work is that the functor M + ¢M
is exact, in other words, S/R should be flat. Moreover it should work
in the simplest of all cases, that is, R should identify with the kernel
of the map § - S® S5, s — 1®s—s®1. This excludes a lot of

otherwise nice extensions S/R. For instance when R is a domain and
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S any localization of R within Quot(R), then S ® S identifies with S
and the map s — 1 ® s — s ® 1 is the zero map, so the kernel is .5,
hence too large.

The correct condition for the most general version of descent is that
S/R should be faithfully flat. A convenient definition of this is: S is
flat over R and for all m in Max(R), mS is a proper ideal of S. A
very useful characterization is: The functor M +— ¢M preserves, and
detects, exactness. We are now ready for the basic concept.

Definition: A descent datum is given by an S-module N and an S®S-
linear isomorphism g : S ® N — N ® S such that go = g3g1. Descent
data form a category, when we declare: A morphism of descent data
(N, g) and (N',¢’) is an S-linear map f : N — N’ making the obvious
square commute (that is, ¢'fi = f29).

We have described above a functor J from Mod-R into the category
of descent data: M goes to N = ¢M, and g was defined explicitly.
The basic result, which is not very hard to prove, says that this functor
J is an equivalence of categories. The inverse functor, on the level
of modules, is given by taking a difference kernel similarly as above.
Everything works fine if we impose extra structure on modules. The
cases we are interested in are mainly R-algebras and R-Hopf algebras.
Then all occurring morphisms, like g and f in the above definition, are
of course required to also be in the relevant category.

2. TWISTED FORMS AND AMITSUR COHOMOLOGY

We take a new point of view now. Let us start with N = ¢M, where
the R-module M is given, and look for other modules M’ obtained by
descent data of the form (N, g). In other words, we try to solve the
“equation”

S@prM =S M
for M'. If the “equation” holds, M’ is called an S-form of M.

We now identify S @ ¢M and sM ® S with ggsM, the module M
base-changed from R to S ® S. (One identification is obvious, the
other just shifts elements of M.) This allows us to simply consider
the map ¢ in a descent datum for N = ¢M as an automorphism of
sosM. We need to restate the descent condition. For ¢ = 1,2, 3, let
a; - S®S — S®S®S be the map that inserts 1 at position i. Then g;
identifies with the map a;.g (the basechanged map along the inclusion
of rings given by a;). The descent condition is still

g2 = g3 0 g1 € Autsgses (sasasM).

Every isomorphism g satisfying this condition defines a form Mg, and
one can show that M, = M, iff there is f € Autg(sM) such that

h=fyogo fi'
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For each n, we have n + 1 injections ay, as, ..., Gy, going from S®"
to S®(*+1): g, inserts a 1 at position i. (So the index n is suppressed.)
This can be visualized as follows:

ST=ZS5RS—55®S5...

If F'is any functor from the category of (commutative) R-algebras to
the category of abelian groups, this leads to a complex

F(S) = F(S®S)—>F(S®S®S)—...,

where each term F'(S®™") is placed in degree n — 1, and the differential
from degree n — 1 to degree n is the alternating sum of the maps F'(a;)
(there are n + 1 of them). So from degree zero to one we have F(a;) —
F(ay), and from degree one to two we have F'(a;) — F'(as)+ F(a3). The
complex property (concatenation of two differentials always gives zero)
is easy to check. But one can say more:

Proposition 2.1. Let F' = G, be the underlying abelian group functor
(so the beginning of the complezx reads S — S ® S, and the differential
is s+ 1®s—s®1). Then the complez is exact in each positive degree.

In general, the cohomology groups of this complex are called Amit-
sur cohomology, written H’S/R(F ). For instance, if ' = G,, then

Hg/R(F) =ker(S - S®S) =R.

It is an important fact that one can define H® and H! also for functors
F with values in the category of all groups (not necessary abelian). One
puts

0y p(F) = {z € F(S)|F(a1)(z) = F(az)(x)};
Hg/r(F) = {y € F(S® 8)|F(az)(y) = F(as)(y) F(a1)(y)}.

Note that H' will no longer be a group in general, only a pointed set,
whose distinguished point is given by the neutral element of F'(S® S).

In particular, if we define Aut M(T') = Auty(T ®r M) for all R-
algebras T, then by our explanations above, the first Amitsur coho-
mology H}g/ r(Aut M) classifies the S/R-form of a given R-module M.
The same holds, mutatis mutandis, if we impose extra structure.

There is no obvious structure whose Aut is G,. But for the multi-
plicative group functor G,, there is a very natural structure having the
multiplicative group G,, as its functor of automorphisms. For every
R-algebra T, the T-automorphism group of the free rank one module
T over itself is clearly T, so Aut R = G,,. On the other hand one
knows the S/R-forms of R; they are exactly the projective modules
of rank one trivialized by S, and modulo isomorphism they form the
abelian group Pic(S/R). So we have:

Proposition 2.2. H}Q/R(Gm) = Pic(S/R) = ker(Pic(R) — Pic(9)).
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If S/R is a field extension L/K, all these objects are trivial. This is
true more generally. Let us look at L/K-forms of the free K-module
(vectorspace) of rank n. Clearly, the automorphism functor Aut(K™)
identifies with the functor GL,,. From the theory of vectorspaces it
is obvious that all L/K-forms of K™ are trivial, just looking at the
dimension. This gives:

Proposition 2.3. For any field extension L/ K, the Amitsur cohomol-
0gy HlL/K(ﬂn) is trivial.

3. A FEW EXAMPLES

(a) Let p a prime, R = K a field of characteristic p, S = L an exten-
sion field of K. We are considering L/K-forms in the category of Hopf
algebras. Let A = Klz,y|/(2?,y?); this becomes a K-Hopf algebra
by letting = and y be primitive. We need to determine Aut A. Ev-
ery automorphism of Hopf algebras respects primitive elements. Hence
every Hopf automorphism of A over K restricts to an automorphism
of Kz + Ky. One can check that a similar property also holds for
all base-changed Hopf algebras rA. Hence the functor Aut A identi-
fies with GL,, and therefore all L/K-forms of the Hopf algebra A are
trivial.

(b) We look at the same object A again over K of characteristic p, but
this time just as an algebra. Let M = xA+yA be the radical of A. Then
every element z of M satisfies 2P = 0. So for any elements z,w € M
one has a well-defined algebra endomorphism sending x to z and y to w,
and this will be an automorphism iff z and w are independent modulo
M?. 1If we now let G; = {¢ € Aut(A)|p = id modM*}, then Go/G
identifies with GL,, and all higher quotients G;/G;,; are isomorphic
to products of copies of G,. A similar discussion works, m.m., when K
is replaced by any K-algebra T'. There exists an appropriate version
of the long exact sequence in Amitsur cohomology, attached to any
short exact sequence of group-valued functors. Applying this and our
previous knowledge, we again obtain that A has no nontrivial forms.

(c) Finally we put p = 2 and look at the same algebra A = K|z, y|/(z?%, v?),
but now we take K of characteristic not 2. To be on the safe side we
assume L/K Galois (separable would be enough). The picture is now
quite different. In a nutshell: x4y is no longer nilpotent of exponent 2.
Stretching this observation a bit, one can show, for any automorphism
@ of A (in principle one would have to write this down with K replaced
by any finite K-algebra T" without nilpotents): Modulo Kzy we either
have p(z) € K*x and ¢(y) € K*y, or vice versa p(z) € K*y and
o(y) € K*z. The automorphisms of the first kind form a subgroup
functor G’ C Aut A, and G’ can be filtered again by subgroups such
that all quotients are G,, or G,, so its first Amitsur cohomology is
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trivial. The entire group Aut A is a semidirect product of G’ and the
two-element group Cy that corresponds to switching  and y. And now
indeed Hj /i (C2) may well be non-trivial. For L/K Galois with group

G, we will see that HlL/K(C’g) = Hom(G, Cy).

One can calculate everything if L/K is a separable quadratic exten-
sion. There always exists exactly one nontrivial L/K-form of A. In the
example L/K = C/R, the nontrivial form is

A = R[u,v]/(uv, u?® — v?).

4. DIFFERENT VERSIONS OF THE DESCENT MECHANISM

If we know more about the extension S/R than just that it is faith-
fully flat, then we can expect more precise and amenable results. Our
goal is Galois descent; this works when S/R is Galois in the sense of
Chase, Harrison and Rosenberg. Note that this implies S/R projec-
tive and faithful. In the book of Knus-Ojanguren, so-called “faithfully
projective” descent is treated as an intermediary between “faithfully
flat” and “Galois”. We will short-circuit this, for two reasons. One of
them is time. The other is that over a noetherian ring, every finitely
generated flat module is already projective, so the former of the two
transitions is not so dramatic. (Side remark: The typical flat modules
which are not finitely generated are localizations. If one wants faith-
fully flat extensions, one has to take direct sums of sufficiently many
localisations. This leads to another variant of descent theory: glueing
objects together in the Zariski topology of Spec(R).)

So let us assume S/R is Galois in the mentioned sense with group
G. The map S® S — Map(G, S) = SY given by s @t — (sy(t)),eq is
then an isomorphism of S-modules.

From this one can deduce an iterated version: The map

S®S®S —S9Y  seteur (sy(t) vé(u))%aeG

is likewise an isomorphism over S (which operates on S® S ® S via the
leftmost factor, and on GG x G-tuples with entries in S in the obvious

way).

Now one has two maps dy,dy : S — S¢ given by d;(s), = (s), and
da(s), = s. In the same vein, there are three maps S¢ — S*¢ given
by

(flrs = 2(fs);
az(f)v,é = f’yé;
aS(f)v,(S = f'y

for each G-tuple f € SC.
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The main point is now that the following diagram commutes (not
too hard to check).

al

S —= S®S§ T@m= S®S®S

. e

S —= 8¢ ——= 9Gx¢,
do 93

The maps d; and 0; are exactly those that show up in the defini-
tion of (non-abelian) group cohomology. Therefore we have for every
group-valued functor F' and every G-Galois extensions S/R of rings an
identification of pointed sets

Hy/p(F) = HY(G, F(S)).

If in particular F' = Aut A for an R-algebra A (say), then H*(G, Aut(gA))
classifies the S/R-forms of A. The G-action on Aut(gA) is by conju-
gation involving the G-action on the tensor factor S. More explicitly,
if A is finitely generated free over R, and an automorphism of gA is
given as a square matrix of coefficients in S, then G simply acts on
these coefficients.

Example: C/R is Galois with G = C5. Let us take A = R[t,t7!] (the
ring of functions on G,,,). Then Aut(cA) is a semidirect product of C*
and C5. A nonzero scalar A in C corresponds to t +— At. The nontrivial
element of Cy corresponds to ¢ — 1/t. We find

HY(G, Aut(cA)) = HY(G, Cy) = Hom(G, Cy)
has two elements. The nontrivial form is well known - the ring of

functions on the unit circle over R (Haggenmiiller-Pareigis). It also
carries a Hopf structure.



