
DESCENT THEORY: FROM GENERAL TO SPECIAL

CORNELIUS GREITHER

1. The basic idea of a descent datum

All rings are assumed commutative. Let R ⊂ S be an extension of
rings; ⊗ stands for ⊗R, and SM is short for S ⊗M . The question is:
When an S-module N is given, how can we decide whether N has the
form SM for some R-module M , and can we describe the candidates
M? If N = SM , then there is an isomorphism g : S ⊗ SM → SM ⊗ S,
sending s⊗ t⊗m to s⊗m⊗ t, in other words: just left-shifting the M -
entry. Then g has two properties. First it makes the following diagram
commute:

S ⊗ SM

g

��

M //

33

++

SM
1⊗−

::

−⊗1

$$
SM ⊗ S

For the second property we need shorthand notation. The map g1 :
S ⊗ S ⊗ SM → S ⊗ SM ⊗ S arises from g via tensoring with S on
the left; similarly g3 by tensoring on the right, and g2 by tensoring in
the middle. All these maps are simple to imagine, but g2 is the most
awkward to write down: if h : S ⊗ SM → SM ⊗ S is any map and
h(s⊗ n) =

∑
i ni⊗ si, then h2(s⊗ t⊗ n) =

∑
i ni⊗ t⊗ si. The second

property of g is then
g2 = g3 ◦ g1.

The effect of either side in this equation is simply shifting M from right
to left; in one go if we use g2, and in two moves, via the middle, if we
use g3g1. The idea is now to recover M as the difference kernel of

SM
g◦(1⊗−)

//

−⊗1
// SM ⊗ S .

A minimal requirement for this to work is that the functor M 7→ SM
is exact, in other words, S/R should be flat. Moreover it should work
in the simplest of all cases, that is, R should identify with the kernel
of the map S → S ⊗ S, s 7→ 1 ⊗ s − s ⊗ 1. This excludes a lot of
otherwise nice extensions S/R. For instance when R is a domain and
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S any localization of R within Quot(R), then S ⊗ S identifies with S
and the map s 7→ 1 ⊗ s − s ⊗ 1 is the zero map, so the kernel is S,
hence too large.

The correct condition for the most general version of descent is that
S/R should be faithfully flat. A convenient definition of this is: S is
flat over R and for all m in Max(R), mS is a proper ideal of S. A
very useful characterization is: The functor M 7→ SM preserves, and
detects, exactness. We are now ready for the basic concept.

Definition: A descent datum is given by an S-module N and an S⊗S-
linear isomorphism g : S ⊗ N → N ⊗ S such that g2 = g3g1. Descent
data form a category, when we declare: A morphism of descent data
(N, g) and (N ′, g′) is an S-linear map f : N → N ′ making the obvious
square commute (that is, g′f1 = f2g).

We have described above a functor J from Mod-R into the category
of descent data: M goes to N = SM , and g was defined explicitly.
The basic result, which is not very hard to prove, says that this functor
J is an equivalence of categories. The inverse functor, on the level
of modules, is given by taking a difference kernel similarly as above.
Everything works fine if we impose extra structure on modules. The
cases we are interested in are mainly R-algebras and R-Hopf algebras.
Then all occurring morphisms, like g and f in the above definition, are
of course required to also be in the relevant category.

2. Twisted forms and Amitsur cohomology

We take a new point of view now. Let us start with N = SM , where
the R-module M is given, and look for other modules M ′ obtained by
descent data of the form (N, g). In other words, we try to solve the
“equation”

S ⊗RM ′ ∼= S ⊗RM
for M ′. If the “equation” holds, M ′ is called an S-form of M .

We now identify S ⊗ SM and SM ⊗ S with S⊗SM , the module M
base-changed from R to S ⊗ S. (One identification is obvious, the
other just shifts elements of M .) This allows us to simply consider
the map g in a descent datum for N = SM as an automorphism of

S⊗SM . We need to restate the descent condition. For i = 1, 2, 3, let
ai : S⊗S → S⊗S⊗S be the map that inserts 1 at position i. Then gi
identifies with the map ai∗g (the basechanged map along the inclusion
of rings given by ai). The descent condition is still

g2 = g3 ◦ g1 ∈ AutS⊗S⊗S (S⊗S⊗SM).

Every isomorphism g satisfying this condition defines a form Mg, and
one can show that Mg

∼= Mh iff there is f ∈ AutS(SM) such that

h = f2 ◦ g ◦ f−11 .
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For each n, we have n+ 1 injections a1, a2, . . . , an+1 going from S⊗n

to S⊗(n+1); ai inserts a 1 at position i. (So the index n is suppressed.)
This can be visualized as follows:

S // // S ⊗ S // //// S ⊗ S ⊗ S . . .

If F is any functor from the category of (commutative) R-algebras to
the category of abelian groups, this leads to a complex

F (S)→ F (S ⊗ S)→ F (S ⊗ S ⊗ S)→ . . . ,

where each term F (S⊗n) is placed in degree n− 1, and the differential
from degree n− 1 to degree n is the alternating sum of the maps F (ai)
(there are n+ 1 of them). So from degree zero to one we have F (a1)−
F (a2), and from degree one to two we have F (a1)−F (a2)+F (a3). The
complex property (concatenation of two differentials always gives zero)
is easy to check. But one can say more:

Proposition 2.1. Let F = Ga be the underlying abelian group functor
(so the beginning of the complex reads S → S ⊗ S, and the differential
is s 7→ 1⊗s−s⊗1). Then the complex is exact in each positive degree.

In general, the cohomology groups of this complex are called Amit-
sur cohomology, written Hi

S/R(F ). For instance, if F = Ga, then

H0
S/R(F ) = ker(S → S ⊗ S) = R.

It is an important fact that one can define H0 and H1 also for functors
F with values in the category of all groups (not necessary abelian). One
puts

H0
S/R(F ) = {x ∈ F (S)|F (a1)(x) = F (a2)(x)};

H1
S/R(F ) = {y ∈ F (S ⊗ S)|F (a2)(y) = F (a3)(y)F (a1)(y)}.

Note that H1 will no longer be a group in general, only a pointed set,
whose distinguished point is given by the neutral element of F (S⊗S).

In particular, if we define AutM(T ) = AutT (T ⊗R M) for all R-
algebras T , then by our explanations above, the first Amitsur coho-
mology H1

S/R(AutM) classifies the S/R-form of a given R-module M .
The same holds, mutatis mutandis, if we impose extra structure.

There is no obvious structure whose Aut is Ga. But for the multi-
plicative group functor Gm there is a very natural structure having the
multiplicative group Gm as its functor of automorphisms. For every
R-algebra T , the T -automorphism group of the free rank one module
T over itself is clearly T×, so AutR = Gm. On the other hand one
knows the S/R-forms of R; they are exactly the projective modules
of rank one trivialized by S, and modulo isomorphism they form the
abelian group Pic(S/R). So we have:

Proposition 2.2. H1
S/R(Gm) = Pic(S/R) = ker(Pic(R)→ Pic(S)).
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If S/R is a field extension L/K, all these objects are trivial. This is
true more generally. Let us look at L/K-forms of the free K-module
(vectorspace) of rank n. Clearly, the automorphism functor Aut(Kn)
identifies with the functor GLn. From the theory of vectorspaces it
is obvious that all L/K-forms of Kn are trivial, just looking at the
dimension. This gives:

Proposition 2.3. For any field extension L/K, the Amitsur cohomol-
ogy H1

L/K(GLn) is trivial.

3. A few examples

(a) Let p a prime, R = K a field of characteristic p, S = L an exten-
sion field of K. We are considering L/K-forms in the category of Hopf
algebras. Let A = K[x, y]/(xp, yp); this becomes a K-Hopf algebra
by letting x and y be primitive. We need to determine AutA. Ev-
ery automorphism of Hopf algebras respects primitive elements. Hence
every Hopf automorphism of A over K restricts to an automorphism
of Kx + Ky. One can check that a similar property also holds for
all base-changed Hopf algebras TA. Hence the functor AutA identi-
fies with GL2, and therefore all L/K-forms of the Hopf algebra A are
trivial.

(b) We look at the same object A again over K of characteristic p, but
this time just as an algebra. LetM = xA+yA be the radical of A. Then
every element z of M satisfies zp = 0. So for any elements z, w ∈ M
one has a well-defined algebra endomorphism sending x to z and y to w,
and this will be an automorphism iff z and w are independent modulo
M2. If we now let Gi = {ϕ ∈ Aut(A)|ϕ ≡ id modM i}, then G0/G1

identifies with GL2, and all higher quotients Gi/Gi+1 are isomorphic
to products of copies of Ga. A similar discussion works, m.m., when K
is replaced by any K-algebra T . There exists an appropriate version
of the long exact sequence in Amitsur cohomology, attached to any
short exact sequence of group-valued functors. Applying this and our
previous knowledge, we again obtain that A has no nontrivial forms.

(c) Finally we put p = 2 and look at the same algebraA = K[x, y]/(x2, y2),
but now we take K of characteristic not 2. To be on the safe side we
assume L/K Galois (separable would be enough). The picture is now
quite different. In a nutshell: x+y is no longer nilpotent of exponent 2.
Stretching this observation a bit, one can show, for any automorphism
ϕ of A (in principle one would have to write this down with K replaced
by any finite K-algebra T without nilpotents): Modulo Kxy we either
have ϕ(x) ∈ K×x and ϕ(y) ∈ K×y, or vice versa ϕ(x) ∈ K×y and
ϕ(y) ∈ K×x. The automorphisms of the first kind form a subgroup
functor G′ ⊂ AutA, and G′ can be filtered again by subgroups such
that all quotients are Gm or Ga, so its first Amitsur cohomology is
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trivial. The entire group AutA is a semidirect product of G′ and the
two-element group C2 that corresponds to switching x and y. And now
indeed H1

L/K(C2) may well be non-trivial. For L/K Galois with group

G, we will see that H1
L/K(C2) = Hom(G,C2).

One can calculate everything if L/K is a separable quadratic exten-
sion. There always exists exactly one nontrivial L/K-form of A. In the
example L/K = C/R, the nontrivial form is

A′ = R[u, v]/(uv, u2 − v2).

4. Different versions of the descent mechanism

If we know more about the extension S/R than just that it is faith-
fully flat, then we can expect more precise and amenable results. Our
goal is Galois descent; this works when S/R is Galois in the sense of
Chase, Harrison and Rosenberg. Note that this implies S/R projec-
tive and faithful. In the book of Knus-Ojanguren, so-called “faithfully
projective” descent is treated as an intermediary between “faithfully
flat” and “Galois”. We will short-circuit this, for two reasons. One of
them is time. The other is that over a noetherian ring, every finitely
generated flat module is already projective, so the former of the two
transitions is not so dramatic. (Side remark: The typical flat modules
which are not finitely generated are localizations. If one wants faith-
fully flat extensions, one has to take direct sums of sufficiently many
localisations. This leads to another variant of descent theory: glueing
objects together in the Zariski topology of Spec(R).)

So let us assume S/R is Galois in the mentioned sense with group
G. The map S⊗S →Map(G,S) = SG given by s⊗ t 7→ (s γ(t))γ∈G is
then an isomorphism of S-modules.

From this one can deduce an iterated version: The map

S ⊗ S ⊗ S → SG×G, , s⊗ t⊗ u 7→
(
s γ(t) γδ(u)

)
γ,δ∈G

is likewise an isomorphism over S (which operates on S⊗S⊗S via the
leftmost factor, and on G × G-tuples with entries in S in the obvious
way).

Now one has two maps d1, d2 : S → SG given by d1(s)γ = γ(s), and
d2(s)γ = s. In the same vein, there are three maps SG → SG×G given
by

∂1(f)γ,δ = γ(fδ);

∂2(f)γ,δ = fγδ;

∂3(f)γ,δ = fγ

for each G-tuple f ∈ SG.
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The main point is now that the following diagram commutes (not
too hard to check).

S

��

a1 //
a2
// S ⊗ S

��

a1 //
a2 //
a3
// S ⊗ S ⊗ S

��
S

d1 //

d2

// SG
∂1 //
∂2 //

∂3

// SG×G.

The maps di and ∂i are exactly those that show up in the defini-
tion of (non-abelian) group cohomology. Therefore we have for every
group-valued functor F and every G-Galois extensions S/R of rings an
identification of pointed sets

H1
S/R(F ) = H1(G,F (S)).

If in particular F = AutA for anR-algebraA (say), then H1(G,Aut(SA))
classifies the S/R-forms of A. The G-action on Aut(SA) is by conju-
gation involving the G-action on the tensor factor S. More explicitly,
if A is finitely generated free over R, and an automorphism of SA is
given as a square matrix of coefficients in S, then G simply acts on
these coefficients.

Example: C/R is Galois with G = C2. Let us take A = R[t, t−1] (the
ring of functions on Gm). Then Aut(CA) is a semidirect product of C×
and C2. A nonzero scalar λ in C corresponds to t 7→ λt. The nontrivial
element of C2 corresponds to t 7→ 1/t. We find

H1(G,Aut(CA)) = H1(G,C2) = Hom(G,C2)

has two elements. The nontrivial form is well known - the ring of
functions on the unit circle over R (Haggenmüller-Pareigis). It also
carries a Hopf structure.


